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(1) Row/column equilibration and row permutation: A Pr �Dr �A �Dc,where Dr and Dc are diagonal matrices and Pr is a row permutationchosen to make the diagonal large compared to the o�-diagonal(2) Find a column permutation Pc to preserve sparsity: A Pc �A � PTc(3) Factorize A = L � U with control of diagonal magnitudeif ( jaiij < p" � jjAjj ) thenset aii to p" � jjAjjendif(4) Solve A � x = b using the L and U factors, with the following iterative re�nementiterate:r = b� A � x : : : sparse matrix-vector multiplySolve A � dx = r : : : triangular solveberr = maxi jrji(jAj�jxj+jbj)i : : : componentwise backward errorif ( berr > " and berr � 12 � lastberr ) thenx = x+ dxlastberr = berrgoto iterateendif Figure 1: The outline of the new GESP algorithm.on distributed memory machines. Instead, for distributed memory machines, we propose to notpivot dynamically, and so enable static data structure optimization, graph manipulation and loadbalancing (as with Cholesky [20, 25]) and yet remain numerically stable. We will retain numericalstability by a variety of techniques: pre-pivoting large elements to the diagonal, iterative re�ne-ment, using extra precision when needed, and allowing low rank modi�cations with corrections atthe end. In Section 2 we show the promise of the proposed method from numeric experiments. Wecall our algorithm GESP for Gaussian elimination with static pivoting. In Section 3, we presentan MPI implementation of the distributed algorithms for LU factorization and triangular solve.Both algorithms use an elaborate 2-D (nonuniform) block-cyclic data distribution. Initial resultsdemonstrated good scalability and a factorization rate exceeding 8 Gops on a 512 node Cray T3E.2 New algorithm and stabilityTraditionally, partial pivoting is used to control the element growth during Gaussian elimination,making the algorithm numerically stable in practice1. However partial pivoting is not the only wayto control element growth; there are a variety of alternative techniques. In this section we presentthese alternatives, and show by experiments that appropriate combinations of them can e�ectivelystabilize Gaussian elimination. Furthermore, these techniques are usually inexpensive compared tothe overall solution cost, especially for large problems.2.1 The GESP algorithmIn Figure 1 we sketch our GESP algorithm that incorporates some of the techniques we considered.To motivate step (1), recall that a diagonally dominant matrix is one where each diagonal entry aiiis larger in magnitude than the sum of magnitudes of the o�-diagonal entries in its row (Pj 6=i jaij j)1Examples exist where even GEPP is unstable, but these are very rare [7, 19].2



or column (Pj 6=i jajij). It is known that choosing the diagonal pivots ensures stability for suchmatrices [7, 19]. So we expect that if each diagonal entry can somehow be made larger relative tothe o�-diagonals in its row or column, then diagonal pivoting will be more stable. The purpose ofstep (1) is to choose diagonal matrices Dr and Dc and permutation Pr to make each aii larger inthis sense.We have experimented with a number of alternative heuristic algorithms for step (1) [13]. Alldepend on the following graph representation of an n � n sparse matrix A: it is represented as anundirected weighted bipartite graph with one vertex for each row, one vertex for each column, andan edge with appropriate weight connecting row vertex i to column vertex j for each nonzero entryaij . Finding a permutation Pr that puts large entries on the diagonal can thus be transformedinto a weighted bipartite matching problem on this graph. The diagonal scale matrices Dr and Drcan be chosen independently, to make each row and each column of DrADc have largest entriesequal to 1 in magnitude (using the algorithm in LAPACK subroutine DGEEQU [3]). Then thereare algorithms in [13] that choose Pr to maximize di�erent properties of the diagonal of PrDrADc,such as the smallest magnitude of any diagonal entry, or the sum or product of magnitudes. But thebest algorithm in practice seems to be the one in [13] that picks Pr, Dr and Dc simultaneously sothat each diagonal entry of PrDrADc is �1, each o�-diagonal entry is bounded by 1 in magnitude,and the product of the diagonal entries is maximized. We will report results for this algorithmonly. The worst case serial complexity of this algorithm is O(n � nnz(A) � log n), where nnz(A) isthe number of nonzeros in A. In practice it is much faster; actual timings appear later.Step (2) is not new and is needed in both SuperLU and SuperLU MT [10]. The column permu-tation Pc can be obtained from any �ll-reducing heuristic. For now, we use the minimum degreeordering algorithm [23] on the structure of ATA. In the future, we will use the approximate mini-mum degree column ordering algorithm by Davis et. al. [6] which is faster and requires less memorysince it does not explicitly form ATA. We can also use nested dissection on A + AT or ATA [17].Note that we also apply Pc to the rows of A to ensure that the large diagonal entries obtained fromStep (1) remain on the diagonal.In step (3), we simply set any tiny pivots encountered during elimination to p" � kAk, where" is machine precision. This is equivalent to a small (half precision) perturbation to the originalproblem, and trades o� some numerical stability for the ability to keep pivots from getting toosmall.In step (4), we perform a few steps of iterative re�nement if the solution is not accurate enough,which also corrects for the p" � kAk perturbations in step (3). The termination criterion is basedon the componentwise backward error berr [7]. The condition berr � " means that the computedsolution is the exact solution of a slightly di�erent sparse linear system (A+ �A)x = b where eachnonzero entry aij has been changed by at most one unit in its last place, and the zero entries areleft unchanged; thus one can say that the answer is as accurate as the data deserves. We terminatethe iteration when the backward error berr is smaller than machine epsilon, or when it does notdecrease by at least a factor of two compared with the previous iteration. The second test is toavoid possible stagnation. (Figure 5 shows that berr is always small.)2.2 Numerical resultsIn this subsection, we illustrate the numerical stability and runtime of our GESP algorithm on53 unsymmetric matrices from a wide variety of applications. The application domains of thematrices are given in Table 1. Most of them, except for two (ECL32, WU), can be obtained fromthe Harwell-Boeing Collection [14] and the collection of Davis [5]. Matrix ECL32 was providedby Jagesh Sanghavi from EECS Department of UC Berkeley. Matrix WU was provided by Yushu3



Discipline Matricesuid ow, CFD af23560, bbmat, bramley1, bramley2, ex11, �dapm11, garon2,graham1, lnsp3937, lns 3937, raefsky3, rma10, venkat01, wuuid mechanics goodwin, rimcircuit simulation add32, gre 1107, jpwh 991, memplus, onetone1, onetone2, twotonedevice simulation wang3, wang4, ecl32chemical engineering extr1, hydr1, lhr01, radfr1, rdist1, rdist2, rdist3a, west2021petroleum engineering orsirr 1, orsreg 1, sherman3, sherman4, sherman5�nite element PDE av4408, av11924sti� ODE fs 541 2Olmstead ow model olm5000aeroelasticity tols4000reservoir modelling pores 2crystal growth simulation cry10000power ow modelling gemat11dielectric waveguide dw8192 (eigenproblem)astrophysics mcfeplasma physics utm5940demography psmigr 1economics mahindas, orani678Table 1: Test matrices and their disciplines.Wu from Earth Sciences Division of Lawrence Berkeley National Laboratory. Figure 2 plots thedimension, nnz(A), and nnz(L + U), i.e. the number of nonzeros in the L and U factors (the�ll-in). The matrices are sorted in increasing order of the factorization time. The matrices of mostinterest for parallelization are the ones that take the most time, i.e. the ones on the right of thisgraph. From the �gure it is clear that the matrices large in dimension and number of nonzerosalso require more time to factorize. The timing results reported in this subsection are obtained onan SGI ONYX2 machine running IRIX 6.4. The system has 8 195 MHz MIPS R10000 processorsand 5120 Mbytes main memory. We only use a single processor, since we are mainly interested innumerical accuracy. Parallel runtimes are reported in section 3.Detailed performance results from this section in tabular format are available athttp://www.nersc.gov/�xiaoye/SC98/.Among the 53 matrices, most would get wrong answers or fail completely (via division by azero pivot) without any pivoting or other precautions. 22 matrices contain zeros on the diagonal tobegin with which remain zero during elimination, and 5 more create zeros on the diagonal duringelimination. Therefore, not pivoting at all would fail completely on these 27 matrices. Most of theother 26 matrices would get unacceptably large errors due to pivot growth. For our experiment,the right-hand side vector is generated so that the true solution xtrue is a vector of all ones. IEEEdouble precision is used as the working precision, with machine epsilon � 10�16. Figure 3 shows thenumber of iterations taken in the iterative re�nement step. Most matrices terminate the iterationwith no more than 3 steps. 5 matrices require 1 step, 31 matrices require 2 steps, 9 matrices require3 steps, and 8 matrices require more than 3 steps. For each matrix, we present two error metrics,in Figure 4 and Figure 5, to assess the accuracy and stability of GESP. Figure 4 plots the errorfrom GESP versus the error from GEPP (as implemented in SuperLU) for each matrix: A red doton the green diagonal means the two errors were the same, a red dot below the diagonal means4
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Figure 3: Iterative re�nement steps in GESP.GESP is more accurate, and a red dot above means GEPP is more accurate. Figure 4 shows thatthe error of GESP is at most a little larger, and can be smaller (21 out of 53), than the errorfrom GEPP. Figure 5 shows that the componentwise backward error [7] is also small, usually nearmachine epsilon, and never larger than 10�12.Although the combination of the techniques in steps (1) and (3) in Figure 1 works well formost matrices, we found a few matrices for which other combinations are better. For example, forFIDAPM11, JPWH 991 and ORSIRR 1, the errors are large unless we omit Pr from step (1). ForEX11 and RADRF1, we cannot replace tiny pivots by p" � jjAjj (in step (3)). Therefore, in thesoftware, we provide a exible interface so the user is able to turn on or o� any of these options.We now evaluate the cost of each step in GESP Figure 1. This is done with respect to the serialimplementation, since we have only parallelized the numerical phases of the algorithm (steps (3)and (4)), which are the most time-consuming. In particular, for large enough matrices, the LUfactorization in step (3) dominates all the other steps, so we will measure the times of each stepwith respect to step (3).Simple equilibration in step (1) (computing Dr and Dc using the algorithm in DGEEQU fromLAPACK) is usually negligible and is easy to parallelize. Both row and column permutation algo-rithms in steps (1) and (2) (computing Pr and Pc) are not easy to parallelize (their parallelizationis future work). Fortunately, their memory requirement is just O(nnz(A)) [6, 13], whereas thememory requirement for L and U factors grows superlinearly in nnz(A), so in the meantime wecan run them on a single processor.Figure 6 shows the fraction of time spent �nding Pr in step (1) using the algorithm in [13], asa fraction of the factorization time. The time is signi�cant for small problems, but drops to 1%to 10% for large matrices requiring a long time to factor, the problems of most interest on parallelmachines.The time to �nd a sparsity-preserving ordering Pc in step (2) is very much matrix dependent. Itis usually cheaper than factorization, although there exist matrices for which the ordering is moreexpensive. Nevertheless, in applications where we repeatedly solve a system of equations with thesame nonzero pattern but di�erent values, the ordering algorithm needs to be run only once, andits cost can be amortized over all the factorizations. We plan to replace this part of the algorithm5
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nnz(L+ U � I) FlopsOrder nnz(A) NumSym StrSym (�106) (�109)AF23560 23560 460598 .0512 .9465 12.8 4.9BBMAT 38744 1771722 .0224 .5398 49.1 4.3ECL32 51993 380415 .6572 .9325 73.5 120.4EX11 16614 1096948 .9999 1.0000 14.1 8.4FIDAPM11 22294 623554 .5476 .9965 23.0 17.9RMA10 46835 2374001 .2443 .9809 14.7 1.8TWOTONE 120750 1224224 .1418 .2738 22.6 8.7WANG4 26068 177196 .1868 1.0000 27.7 35.3Table 2: Characteristics of the test matrices. NumSym is the fraction of nonzeros matched byequal values in symmetric locations. StrSym is the fraction of nonzeros matched by nonzeros insymmetric locations.with something faster, as outlined in Section 2.1.As can be seen in Figure 6, computing the residual (sparse matrix-vector multiplication r =b � A � x) is cheaper than a triangular solve (A � dx = r), and both take a small fraction of thefactorization time. For large matrices the solve time is often less than 5% of the factorization time.Both algorithms have been parallelized (see section 3 for parallel performance data).Finally, our code has the ability to estimate a forward error bound for the true error jjxtrue�xjj1jjxjj1 .This is by far the most expensive step after factorization. (For small matrices, it can be moreexpensive than factorization, since it requires multiple triangular solves.) Therefore, we will do thisonly when the user asks for it.3 An implementation with MPIIn this section, we describe our design, implementation and the performance of the distributedalgorithms for two main steps of the GESP method, sparse LU factorization (step (3)) and sparsetriangular solve (used in step (4)). Our implementation uses MPI [26] to communicate data, and sois highly portable. We have tested the code on a number of platforms, such as Cray T3E, IBM SP2,and Berkeley NOW. Here, we only report the results from a 512 node Cray T3E-900 at NERSC. Toillustrate scalability of the algorithms, we restrict our attention to eight relatively large matricesselected from our testbed in Table 1. They are representative of di�erent application domains. Thecharacteristics of these matrices are given in Table 2.3.1 Matrix distribution and distributed data structureWe distribute the matrix in a two-dimensional block-cyclic fashion. In this distribution, the Pprocesses (not restricted to be a power of 2) are arranged as a 2-D process grid of shape Pr � Pc.The matrix is decomposed into blocks of submatrices. Then, these blocks are cyclically mappedonto the process grid, in both row and column dimensions. Although a 1-D decomposition ismore natural to sparse matrices and is much easier to implement, a 2-D layout strikes a goodbalance among locality (by blocking), load balance (by cyclic mapping), and lower communicationvolume (by 2-D mapping). 2-D layouts were used in scalable implementations of sparse Choleskyfactorization [20, 25]. 7



We now describe how we partition a global matrix into blocks. Our partitioning is based onthe notion of unsymmetric supernode �rst introduced in [8]. Let L be the lower triangular matrixin the LU factorization. A supernode is a range (r : s) of columns of L with the triangular blockjust below the diagonal being full, and with the same row structure below this block. Because ofthe identical row structure of a supernode, it can be stored in a dense format in memory. Thissupernode partition is used as our block partition in both row and column dimensions. If there areN supernodes in an n-by-n matrix, the matrix will be partitioned into N2 blocks of nonuniformsize. The size of each block is matrix dependent. It should be clear that all the diagonal blocksare square and full (we store zeros from U in the upper triangle of the diagonal block), whereasthe o�-diagonal blocks may be rectangular and may not be full. The matrix in Figure 7 illustratessuch a partitioning. By block-cyclic mapping we mean block (I; J) (0 � I; J � N � 1) is mappedonto the process at coordinate (I mod Pr, J mod Pc) of the process grid. Using this mapping, ablock L(I; J) in the factorization is only needed by the row of processes that own blocks in row I .Similarly, a block U(I; J) is only needed by the column of processes that own blocks in column J .In this 2-D mapping, each block column of L resides on more than one process, namely, acolumn of processes. For example in Figure 7, the k-th block column of L resides on the columnprocesses f0, 3g. Process 3 only owns two nonzero blocks, which are not contiguous in the globalmatrix. The schema on the right of Figure 7 depicts the data structure to store the nonzero blockson a process. Besides the numerical values stored in a Fortran-style array nzval[] in column majororder, we need the information to interpret the location and row subscript of each nonzero. This isstored in an integer array index[], which includes the information for the whole block column andfor each individual block in it. Note that many o�-diagonal blocks are zero and hence not stored.Neither do we store the zeros in a nonzero block. Both lower and upper triangles of the diagonalblock are stored in the L data structure. A process owns dN=Pce block columns of L, so it needsdN=Pce pairs of index/nzval arrays.For matrix U , we use a row oriented storage for the block rows owned by a process, althoughfor the numerical values within each block we still use column major order. Similarly to L, we alsouse a pair of index/nzval arrays to store a block row of U . Due to asymmetry, each nonzero blockin U has the skyline structure as shown in Figure 7 (see [8] for details on the skyline structure).Therefore, the organization of the index[] array is di�erent from that for L, which we omit showingin the �gure.Since we do no dynamic pivoting, the nonzero patterns of L and U can be determined duringsymbolic factorization before numerical factorization begins. Therefore, the block partitioning andthe setup of the data structure can all be performed in the symbolic algorithm. This is muchcheaper to execute as opposed to partial pivoting where the size of the data structure cannot beforecast and must be determined on the y as factorization proceeds.3.2 Sparse LU factorizationFigure 8 outlines the parallel sparse LU factorization algorithm. We use Matlab notation for integerranges and submatrices. There are three steps in the K-th iteration of the loop. In step (1), onlya column of processes participate in factoring the block column L(K : N;K). In step (2), onlya row of processes participate in the triangular solves to obtain the block row U(K;K + 1 : N).The rank-b update by L(K + 1 : N;K) and U(K;K + 1 : N) in step (3) represents most of thework and also exhibits more parallelism than the other two steps, where b is the block size of theK-th block column/row. For ease of understanding, the algorithm presented here is simpli�ed. Theactual implementation uses a pipelined organization so that processes PROCC(K + 1) will startstep (1) of iteration K + 1 as soon as the rank-b update (step (3)) of iteration K to block column8
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Figure 7: The 2-D block-cyclic layout and the data structure to store a local block column of L.Let mycol (myrow) be my process column (row) number in the process gridLet PROCC(K) (PROCR(K)) be the column (row) processes that own block column (row) Kfor block K = 1 to N do(1) if ( mycol = PROCC(K) )Obtain the block column factor L(K : N;K)Send L(K : N;K) to the processes in my row who need itelseReceive L(K : N;K) from processes PROCC(K) if I need itendif(2) if ( myrow = PROCR(K) )Perform parallel triangular solves : U(K;K + 1 : N) = L(K;K)�1 �A(K;K + 1 : N)Send U(K;K + 1 : N) to processes in my column who need itelseReceive U(K;K + 1 : N) from processes PROCR(K) if I need itendif(3) for J = K + 1 to N dofor I = K + 1 to N doif ( myrow = PROCR(I) & mycol = PROCC(J) & L(I;K) 6= 0 & U(K; J) 6= 0 )A(I; J) = A(I; J)� L(I;K) � U(K; J)endifend for Figure 8: Distributed sparse LU factorization algorithm.9



K +1 �nishes, before completing the update to the trailing matrix A(K +1 : N;K+2 : N) ownedby PROCC(K + 1). The pipelining alleviates the lack of parallelism in both steps (1) and (2).On 64 processors of Cray T3E, for instance, we observed speedups between 10% to 40% over thenon-pipelined implementation.In each iteration, the major communication steps are send/receive L(K : N;K) across processrows and send/receive U(K;K + 1 : N) down process columns. Our data structure (see Figure 7)ensures that all the blocks of L(K : N;K) and U(K;K + 1 : N) on a process are contiguous inmemory, thereby eliminating the need for packing and unpacking in a send-receive operation orsending many more smaller messages. In each send-receive pair, two messages are exchanged, onefor index[] and another for nzval[]. To further reduce the amount of communication, we employthe notion of elimination dags (EDAGs) [18]. That is, we send the K-th column of L rowwise tothe process owning the J-th column of L only if there exists a path between (super)nodes K andJ in the elimination dags. This is done similarly for the columnwise communication of rows of U .Therefore, each block in L may be sent to fewer than Pc processes and each block in U may be sentto fewer than Pr processes. In other words, our communication takes into account the sparsity ofthe factors as opposed to \send-to-all" approach in a dense factorization. For example, for AF23560on 32 (4 � 8) processes, the total number of messages is reduced from 351052 to 302570, or 16%fewer messages. The reduction is even more with more processes or sparser problems.3.3 Sparse triangular solveThe sparse lower and upper triangular solves are also designed around the same distributed datastructure. The forward substitution proceeds from the bottom of the elimination tree to the root,whereas the back substitution proceeds from the root to the bottom. Figure 9 outlines the algo-rithm for sparse lower triangular solve. The algorithm is based on a sequential variant called \innerproduct" formulation. In this formulation, before the K-th subvector x(K) is solved, the updatefrom the inner product of L(K; 1 : K � 1) and x(1 : K � 1) must be accumulated and subtractedfrom b(K). The diagonal process, at the coordinate (K mod Pr, K mod Pc) of the process grid,is responsible for solving x(K). Two counters, frecv and fmod, are used to facilitate the asyn-chronous execution of di�erent operations. frecv[K] counts the number of process updates to x(K)to be received by the diagonal process owning x(K). This is needed because L(K; 1 : K� 1) is dis-tributed among the row processes PROCR(K), and due to sparsity, not all processes in PROCR(K)contribute to the update. When frecv(K) becomes zero, all the necessary updates to x(K) arecomplete and x(K) is solved. fmod(K) counts the number of block modi�cations to be summedinto the local inner product update (stored in lsum(K)) to x(K). When fmod(K) becomes zero,the partial sum lsum(K) is sent to the diagonal process that owns x(K).The execution of the program is message-driven. A process may receive two types of messages,one is the partial sum lsum(K), another is the solution subvector x(K). Appropriate action istaken according to the message type. The asynchronous communication enables large overlappingbetween communication and computation. This is very important because the communication tocomputation ratio is much higher in triangular solve than in factorization.The algorithm for the upper triangular solve is similar to that illustrated in Figure 9. However,because of the row oriented storage scheme used for matrix U , there is a slight complication in theactual implementation. Namely, we have to build two vertical linked lists to enable rapid access ofthe matrix entries in a block column of U . 10



Let mycol (myrow) be my process column (row) number in the process gridLet PROCC(K) be the column processes that own block column Kx = blsum = 0for each block K that I own : : : Compute leaf nodesif ( myrow = K mod Pr & mycol = K mod Pc & frecv[K] = 0 )x(K) = L(K;K)�1 � x(K)Send x(K) to the column processes PROCC(K)endifend forwhile ( I have more work ) do : : : Compute internal nodesReceive a message (*)if ( message is lsum(K) )x(K) = x(K) + lsum(K);frecv(K) = frecv(K)� 1if ( frecv(K) = 0 )x(K) = L(K;K)�1 � x(K)Send x(K) to the column processes PROCC(K)endifelse if ( message is x(K) )for each I > K, L(I;K) 6= 0 that I ownlsum(I) = lsum(I)� L(I;K) � x(K)fmod(I) = fmod(I)� 1if ( fmod(I) = 0 )Send lsum(I) to the diagonal process who owns L(I; I)endifend forendifend while Figure 9: Distributed lower triangular solve L � x = b.
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Symbolic NumericP=4 16 32 64 128 256 512 MopsAF23560 1.69 32.26 11.05 7.33 5.94 5.88 7.08 7.16 856BBMAT 11.81 636.52 163.48 92.72 52.07 32.10 22.85 18.52 2493ECL32 14.02 462.74 123.95 68.55 37.47 23.33 17.50 14.97 8352EX11 1.77 27.45 8.80 5.35 3.81 3.19 3.47 3.39 2628FIDAPM11 4.10 162.37 45.33 26.53 15.55 10.22 8.34 7.85 2291RMA10 1.67 21.20 9.36 7.00 6.86 6.49 7.58 7.47 511TWOTONE 6.61 152.27 70.22 42.44 33.36 31.46 29.96 31.72 297WANG4 4.28 104.73 29.71 16.45 10.19 7.13 7.11 6.59 5542Table 3: LU factorization time in seconds and Megaop rate on the 512 node T3E-900.3.4 Parallel performanceRecall that we partition the blocks based on supernodes, so the largest block size equals the numberof columns of the largest supernode. For large matrices, this can be a few thousand, especiallytowards the end of matrix L. Such a large granularity would lead to very poor parallelism and loadbalance. Therefore, when this occurs, we break the large supernode into smaller chunks, so thateach chunk does not exceed our preset threshold, the maximum block size. By experimenting, wefound that a maximum block size between 20 and 30 is good on the Cray T3E. We used 24 for allthe performance results reported in this section.Table 3 shows the performance of the factorization on the Cray T3E-900. The symbolic analysis(steps (1) and (2) in Figure 1) is not yet parallel, so we start with a copy of the entire matrix on eachprocessor, and run steps (1) and (2) independently on each processor. Thus the time is independentof the number of processors. The �rst column of Table 3 reports the time spent in the symbolicanalysis. The memory requirement of the symbolic analysis is small, because we only store andmanipulate the supernodal graph of L and the skeleton graph of U , which are much smaller than thegraphs of L and U . The subsequent columns in the table show the factorization time with a varyingnumber of processors. For four large matrices (BBMAT, ECL32, FIDAPM11 and WANG4), thefactorization time continues decreasing up to 512 processors, demonstrating good scalability. Thelast column reports the numeric factorization rate in Mops. More than 8 Gops is achieved formatrix ECL32. This is the fastest published result we have seen for any implementation of parallelsparse Gaussian elimination.Table 3 starts with P = 4 processors because some of the examples could not run with fewerprocessors. As a reference, we compare our distributed memory code to our shared memory Su-perLU MT code using small numbers of processors. For example, using 4 processor DEC Al-phaServer 8400 (SMP) 2, the factorization times of SuperLU MT for matrices AF23560 and EX11are 19 and 23 seconds, respectively, comparable to the 4 processor T3E timings. This indicatesthat our distributed data structure and message passing algorithm do not incur much overhead.Table 4 shows the performance of the lower and upper triangular solves altogether. When thenumber of processors continues increasing beyond 64, the solve time remains roughly the same.Although triangular solves do not achieve high Megaop rates, the time is usually much less thanthat for factorization.The e�ciency of a parallel algorithm depends mainly on how the workload is distributed andhow much time is spent in communication. One way to measure load balance is as follows. Let2Each processor is the same as one T3E processor, except there is a 4 MB tertiary cache.12



P=4 8 16 32 64 MopsAF23560 0.94 0.90 0.69 0.67 0.64 42BBMAT 3.69 3.42 2.27 2.23 1.83 56ECL32 2.95 2.60 1.66 1.57 1.17 128EX11 0.50 0.46 0.32 0.31 0.26 112FIDAPM11 1.39 1.26 0.83 0.83 0.68 70RMA10 0.77 0.74 0.58 0.53 0.50 60TWOTONE 4.37 4.37 3.65 3.15 2.95 16WANG4 1.09 0.99 0.67 0.63 0.50 112Table 4: Triangular solves time in seconds and Megaop rate on the T3E-900.AF23560 BBMAT ECL32 EX11 FIDAPM11 RMA10 TWOTONE WANG4Bfact .82 .77 .94 .87 .70 .73 .43 .92Bsol .84 .81 .92 .83 .81 .76 .66 .88Commfact .82 .54 .54 .77 .59 .92 .92 .62sol .97 .97 .96 .97 .97 .96 .96 .97Table 5: Load balance and communication on 64 processors Cray T3E.fi denote the number of oating-point operations performed on process i. We compute the loadbalance factor B = Pi(fi)P maxi(fi) . In other words, B is the average workload divided by the maximumworkload. It is clear that 0 < B � 1, and higher B indicates better load balance. The parallelruntime is at least the runtime of the slowest process, whose workload is highest. In Table 5 wepresent the load balance factor B for both factorization and solve phases. As can be seen from thetable, the distribution of workload is good for most matrices, except for TWOTONE.In the same table, we also show the fraction of the runtime spent in communication. The num-bers were collected from the performance analysis tool called Apprentice on the T3E. The amount ofcommunication is quite excessive. Even for the matrices that scale well, such as BBMAT, ECL32,FIDAPM11 and WANG4, more than 50% of the factorization time is spent in communication.For the solve, which has much smaller amount of computation, communication takes more than95% of the total time. We expect the percentage of communication will be even higher with moreprocessors, because the total amount of computation is more or less constant.Although TWOTONE is a relatively large matrix, the factorization does not scale as well asfor the other large matrices. One reason is that the present submatrix to process mapping resultsin very poor load distribution. Another reason is due to long time in communication. When welook further into communication time using Apprentice, we found that processes are idle 60% ofthe time waiting to receive the column block of L sent from a process column on the left (step (1)in Figure 8), and are idle 23% of the time waiting to receive the row block of U sent from a processrow from above (step (2) in Figure 8). Clearly, the critical path of the algorithm is in step (1), whichmust preserve certain precedence relation between iterations. Our pipelining method shortens thecritical path to some extent, but we expect the length of the critical path can be further reduced bya more sophisticated DAG (task graph) scheduling. For the solve, we found that processes are idle73% of the time waiting for a message to arrive (at line (*) in Figure 9). So on each process thereis not much work to do but a large amount of communication. These communication bottlenecksalso occur for the other matrices, but the problems are not so pronounced as TWOTONE.13



Another problem with TWOTONE is that supernode size (or block size) is very small, only 2.4columns on average. This results in poor uniprocessor performance and low Megaop rate.4 Concluding remarks and future workWe propose a number of techniques in place of partial pivoting to stabilize sparse Gaussian elim-ination. Their e�ectiveness is demonstrated by numerical experiments. These techniques enablestatic analysis of the nonzero structure of the factors and the communication pattern. As a result,a more scalable implementation becomes feasible on large-scale distributed memory machines withhundreds of processors. Our preliminary software is being used in a quantum chemistry applicationat Lawrence Berkeley National Laboratory, where a complex unsymmetric system of order 200,000has been solved within 2 minutes.4.1 More techniques for numerical stabilityAlthough the current GESP algorithm is successful for a large number of matrices, it fails tosolve one �nite element matrix, AV41092, because the pivot growth is still too large with anycombination of the current techniques. We plan to investigate other complementary techniques tofurther stabilize the algorithm. For example, we can use a judicious amount of extra precision tostore some matrix entries more accurately, and to perform internal computations more accurately.This facility is available for free on Intel architectures, which performs all arithmetic most e�cientlyin 80-bit registers, and at modest cost on other machines. The extra precision can be used in bothfactorization and residual computation.We can also mix static and partial pivoting by only pivoting within a diagonal block owned bya single processor (or SMP within a cluster of SMPs). This can further enhance stability.We can use a more aggressive pivot size control strategy in step (4) of the algorithm. That is,instead of setting tiny pivots to p" � jjAjj, we may set it to the largest magnitude of the currentcolumn. This incurs a non-trivial amount of rank-1 perturbation to the original matrix. In theend, we use Sherman-Morrison-Woodbury formula [7] to recover the inverse of the original matrix,at the cost of a few more steps of inverse iteration.It remains to be seen in what circumstances these ideas should be employed in practice. Thereare also theoretical questions to be answered.4.2 High performance issuesIn order to make the solver entirely scalable, we need to parallelize the symbolic algorithm. In thiscase, we will start with the matrix initially distributed in some manner. The symbolic algorithmthen determines the best layout for the numeric algorithms, and redistributes matrix if necessary.This also requires us to provide a good interface so the user knows how to input the matrix in thedistributed manner.For the LU factorization, we will investigate more general functions for matrix-to-process map-ping and scheduling of computation and communication by exploiting more knowledge from theEDAGs. This is expected to relax much of the synchrony in the current factorization algorithm,and reduce communication. We also consider switching to a dense factorization, such as the oneimplemented in ScaLAPACK [4], when the submatrix at the lower right corner becomes su�cientlydense. The uniprocessor performance can also be improved by amalgamating small supernodes intolarge ones. 14



To speed up the sparse triangular solve, we may apply some graph coloring heuristic to reducethe number of parallel steps [21]. There are also alternative algorithms other than substitutions,such as those based on partitioned inversion [1] or selective inversion [24]. However, these algorithmsusually require preprocessing or di�erent matrix distributions than the one used in our factorization.It is unclear whether the preprocessing and redistribution will o�set the bene�t o�ered by thesealgorithms, and will probably depend on the number of right-hand sides.5 Related workDu� and Koster [13] applied the techniques of permuting large entries to the diagonal in bothdirect and iterative methods. In their direct method using a multifrontal approach, the numericfactorization �rst proceeds with diagonal pivots as previously chosen by the analysis on the struc-ture of A+AT . If a diagonal entry is not numerically stable, its elimination will be delayed, and alarger frontal matrix will be passed to the later stage. They showed that using the initial permuta-tion, the number of delayed pivots were greatly reduced in factorization. They experimented withsome iterative methods such as GMRES, BiCGSTAB and QMR using ILU preconditioners. Theconvergence rate is substantially improved in many cases when the initial permutation is employed.Amestoy, Du� and L'Excellent [2] implemented the above multifrontal approach for distributedmemory machines. The host performs the �ll-reducing ordering, estimates each frontal matrixstructure, and statically maps the assembly tree, all based on the symmetric pattern of A + AT ,and then sends the information to the other processors. During numerical factorization, each frontalmatrix is factorized by a master processor and one or more slave processors. Due to possible delayedpivots, the frontal matrix size may be di�erent than predicted by the analysis phase. So the masterprocessor dynamically determines how many slave processors will be actually used for each frontalmatrix. They showed good performance on 32 processors IBM SP2.MCSPARSE [16] is a parallel unsymmetric linear system solver. The key component in thesolver is the reordering step, which transforms the matrix into a bordered block upper triangularform. Their reordering �rst uses an unsymmetric ordering to put relatively large entries on thediagonal. The algorithm is a modi�ed version of Du� [11, 12]. After this unsymmetric ordering,they use several symmetric permutations, which preserve the diagonal, to order the matrix into thedesired form. With large diagonal entries, there is a better chance of obtaining a stable factorizationby pivoting only within the diagonal blocks. The number of pivots from the border is thus reduced.Large and medium grain parallelism is then exploited to factor the diagonal blocks and eliminatethe bordered blocks. They implemented the parallel factorization algorithm on a 32 processorCedar, an experimental shared memory machine.Fu, Jiao and Yang [15] designed a parallel LU factorization algorithm based on the followingstatic information. The sparsity pattern of the Householder QR factorization of A contains theunion of all sparsity patterns of the LU factors of A for all possible pivot selections. This has beenused to do both memory allocation and computation conservatively (on possibly zero entries), but itcan be arbitrarily conservative, particularly for matrices arising from circuit and device simulations.For several matrices that do not incur much overestimation, they showed good factorization speedon 128 processors Cray T3E.It will be interesting to compare the performance of the di�erent approaches.15
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